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Abstract

This chapter treats C3 processes from a formal theory viewpoint. The

approach is microscopic in nature, using a time-slice model - as opposed, e.g.,

to the outcome path approach of Petri nets and their generalizations. The

usual SHOR paradigm plays the central role in the structuring of nodes, while
knowledge-based information also plays a role. These intranodal relations - as

we.l as internodal relations in the form of signals and communications through

medium noise - are combined into a single large-scale formal model. In addition,

uncertainty in the form of non-stochastic information, such as through linguis-

tic sources, is taken into account in the data fusion aspect.

The basic model consists of axioms representing the various conditional

relations among the C3 SHOR paradigm variables, such as input signals, detection

states, manpower, supply levd:ls, damage levels, hypotheses of situations, and

decisions and reactions/responses. The choice of the actual functional distri-

buti;onal relations among these variables relative to the axiom constraints can

be interpreted as a C3 design move within azero-sumgame theoretic context. The

basic loss function here consists of some pre-chosen moe/mop of the state of

"health" of the friendly and adversary C3 systems. In turn, the health of each

side is determined from an averaging procedure over all node states of the in-

dividual node state distributions in conditional form following SHOR paradigm

signal processing cycles. These node state distributions are obtainable as out-

puts of the basic model described above.



BACKGROUND 04 C 3 ANALYSIS

The history of C3 analysis as an organized approach to defining the
general military problem, and in particular the command and control aspects,
goes back several years. For a brief history of approaches based upon the
MIT/ONR Workshop on C3 Systems - for many years the premier academic venue

for C3 analysis - see e.g. Goodman [1]. Despite the large amount of literature
produced on C3 issues- whether it be from the Workshop or other Government or

private industry sources - a basic pattern emerges: little attention has been

paid to the establishment of an overall C3 model from a quantitative micro-

scopic or "bottoms-up" point of view. Instead, much of the work has been de-
voted to either qualitatively-based analysis or to quantitative analysis of
bits and pieces of the whole C3 panarama. This is obvious due to the the great

potential complexity involved in attempting to model the entire detailed pro-
cess. In addition, some papers have been produced approaching C. systems from
a complete macroscopic or "top-down" viewpoint. Examples of of the first two
types of analysis are numerous. Perusing through the last several issues of
the Proceedings of the MIT/ONR Workshop and its subsequent successor,the Sym-

posia on C2 Research, one finds articles on command planning, fire control,
tracking and filtering, correlation of multiple targets, surveillance, limited
interacting multiple persons decision games, time studies, stochastic control
problems, etc. Examples of the last-mentioned type of study are not as plenti-

ful, but include papers on markovian models of C3 systems relative to attrition
and supply, variations of Lawson's macro-thermodynamic analogue, Lanchester's
attrition equations and its generalizations, use of general resource allocation
principles, and applications of analogues with laws of behavior in economics
and other large-scale systems.

Of course, the aoove-mentioned examples certainly contribute toward the
overall understanding of C3 in general; however, they point up the lack of any
attempt to model C3 from a microscopic approach. It is the thesis here that it

is not too early in the development of C3 as a discipline to make this effort.

Among the work directed previously to this goal , mention should be made of
Ingber [2,3] and Rubin and Mayk [4,5j. Ingber utilizes the path integral prin-

ciple from nonlinear nonequilibrium statistical mechanics to attempt a meso-

macroscopic C3 analogue model, while Rubin and Mayk's approach has a more micro-

Scopic flavor in extending th! 1nchesti pqua ions. Final ly, the work of Levis



L al. [6-8] should also be noted. This is based upon a partial microscopic

model of the SHOR paradigm concerning information throughput and transmittal

relative to an overall organizational model. In a sense, this work has influ-

enced the authcr's thinking more than any other source with respect to modeling

of C3 systems.

OBJECTIVES ANlD APPROACH

The long-range goal of this.vork is two-fold:

(1) To show tactical C3 processes can be reasonably modeled within a game

theory context, using a formal system of axioms which capture a minimal number

of pertinent relations among the C3 variables and operators.

(2) To provide an outline for a feasible imptementation of this program

as an aid in the design of C3 systems.

For present, we must be content with only the first goal; time will tell

whether the second goal can be achieved. In modeling C3 processes one must be

always aware of the tradeoff between the fidelity of theory and the complexity

of practical implementations. With this in mind, a C3 design game is proposed

here based upon the outputs of a formal theory for the evolution of node states.

This is predicated upon the assumption that a C3 system as envisioned here is

completely identified as a collection of such interacting node states, each oper-

ating according to the SHOR paradigm (S=sense, H=hypothesize, 0= ptions available,

R=response). Externally, the model can be implemented via standard probability

ideas , but internally, two factors involving nonstandard concepts are treated:

incorporation of linguistic-based or narrative information and utilization of

conditioned information, when the antecedents of the conditioning differ. More

details of this will be presented in the following sections.

Before proceeding to the development of the formal theory, a summary of

the key ideas in describing and analyzing C3 systems as viewed here is given in

Figures 1-5. Figure I illustrates a typical interaction of C3 nodes. The SHOR

paradigm is outlined in Figure 2, with the basic evolution cycle of node signal

processing shown in Figure 3. Figure 4 outlines how knowledge flows in general

in carrying out a formal theory and,finally, Figure 5 illustrates the decompo-

Sition of a C3 node state into its proper and knowledge parts.
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Quantitative Rspects
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RATIOHALE FOR USE OF FORMAL THEORY

Basically, all scientific disciplines are concerned with developing the-

o.ries as comprehensive as possible. This is both to explain past empirically ob-

tained data and to predict as accurately as possible likely future performance or

behavior. Given sufficient specialization and localization, these goals have been

realized to varying degrees of success in many areas comprising the "hard" sciences.

These include, for example: natural/physical phenomena studied in Mechanics, Bilogy,

and Chemistry; the more abstract-rooted, but related fields of Statistical Communi-

cations and Information, aid the yet more abstract general fields of Mathematics

and Logic. On the other hand, much less success has been achieved in developing

explanatory theories for the "soft" sciences related to human thought and relations,

including Natural Language, Cognition, Psychology, Sociology, and Law.

At the outset, it must be pointed out that any attempt at describing syste-

matically C3 ought to span both soft and hard sciences. This is'due to the inter-

dependencies of the following three facors:

a. necessary physical actions and effects (possibly deadly) involved in

.moving about men and supplies relative to the execution of weapons and resulting

damage given and received

b. decision-making schemes used in carrying out all aspects of part a

c. information content present upon which part b operates (in this case

both sensor-oriented (stochastic) and human-oriented (linguistic) information [;,ay

be present)

In synthesizing the above-mentioned concepts into a coherent whole, it is

reasonable to attempt a full formal approach, drawing from previous more localized

situation-specific analyses of C3 systems. Such a comprehensive formal theory of C3

can help in the long run to place it more within the realm of science rather than

just art and empiricism. Most ir-ortantly, such a framework is relt; ., ,

amenabZe to chances - such as -' -rher tuning or modi fcat-ions j r ':.. . "hen

deemed necessary, and, a.; we, rxhibi -s the basic louica relatio,:.r :..).

structure for a17 the ,auiab,.d.

Examples of formal theory abound. To illustrate this point, see e.q. Uie

work of Woodger (9] in Biology, Carnap (10] for aspects of Sociology , iw. nd

more recently, in attempting I'; axiomatize Quantum Mechanics Ill1. Al., ',,

a formal theory C3 systems can :Pe analyzed from a more universal m,,i h..:,',



logical viewpoint. In particular, the newly-developed calculus of conditional

events [12,13] becomes readily applicable to more cons stent modeling of combin-

a'.ion of conditional evidence, as part of data fusion.

The theory outlined in the subsequent sections is based upon a distil-

lation of the work found in [14-18].

C3 VARIABLES

In building the formal theory, one must first scope out the relevant var-

iables describing the system. Generally, these variables are indicated by the end

of the alphabet letters as X,Y,Z. Particular variables are denoted by other let-

ters.such as R denoting response of a node, N for the entire node state, and ALG

for the algorithm selected for a given node following "signal" reception (the

quotes later to be explained), etc. Two specifically designated variables are

actually constants: S1 for the universal or always true event or action and 0 for

the null or always false event or action.

Each variable, where necessary, indicates through appropriate subscripting

or superscripting the time, hostile vs. friendly status of C3 system, as well as
the identification number. In addition, each variable X has associated with "t a

natural domain of values that the variable can achieve. Call this dom(X). Depend-

ing on the nature of the variable X, dom(X) consists of usually a collection of

subsets of a given set, or in particular, of a collection of singleton "points"

making up the parent set dom(X).

It should also be noted that all axioms involving variables can be convert-

ed to corresponding ones vith any domain value substituted for the corresponding

variable. For convenience, variables can be divided into two basic types - intra-

nodal and internodal - with further suodivisions where warranted.

INTRArODAL VARIABLES

These designated variables describe the functioning of a typical C3 decis-

ion node. Three subdivisions arise; no"-_ state proper, knowledge aspect, and node

structure.

(1) N denotes the ensemble of node state proper variables for a typical node.

Some examples include: TRP, the number of troops present, FQ, the true eqzatlons

of motion of the entire node, such as straight line constant velocity, second '.e-

gree motion in a parabolic path, crrc'a r constant tangential motlnn, et . Al.,



WP6 indicates number of weapons of type 6 present in the node and DAM damage level,

to the node so far. Thus, one can write typically

N = (..,TRP,EQ,..,WP6,-.,DAM,..) (a)

filling in the appropriate varibles.

(2) K denotes the collection of knowledge-related variables for the node of

interest. Generally, this is taken here to be the estimates of tne variables belong-

ing to all other nodes, friendly or hostile. In many cases, this will be vacuous

from lack of pertinent information. Thus, e.g., one might have WP6i j  indicating

node i's estimate of WP6 relative to node j. A typical example of K can be

K = (..,EQ ,..,WP4 (b)

(3) T denotes the collection of variables describing the actual functioning

of the node. These include DET, detection, HYP, hypotheses formulation, ALG, a%.o-

rith , selection, FUS, data fusion, and DEC, decision, all based upon incoming
"signal" S. The quotes about S refer to the fact that S could be a signal in the

classical sense or an incoming weapon about to explode, or any other physical or

sensory interaction between nodes. Thus, one could write

T = (DET,HYP,ALG,FUS,DEC,..) (c)

INITERNODAL VARIABLES

3
The second type of C variable is the internodal or between-node type.

These variables describe the factors present that affe-t and relate one decision

node with another. These include R, the node response following all data/"signal"

processing of "signal" S and S itself.

The fundamental relationship between an outgoing node response becoming

eventually a "signal" relative to another node or nodes is determined by the in-

tervening environment or medium which can distort and/or produce "additive" (in

some algebraic sense such as ordinary arithmetic addition or multiplication) noise

to the original response. Symbolically, one ia. the qeneral regression relation

G(R) ( . (d6

where internoda! variable G is actual1x ,z nuI: I,.' valued (vector or ,caar)



function which is possibly nonlinear in R and Q represents addtive error. (Other

relations among internodal and intranodal variables will be considered in the next

sections.) Thus, the internodal variables can be displayed as, say,

j = (S,R,G,Q) , (e)

with, of course, suitable time and node identifier indices.

EXAMPLES OF DOMAIUS OF VARIABLES MND TRANSFOR 1S

OF LINGU"STIC-IaO~r WI OH .TO STOCHASTIC

Some':exgh'ple.s of domains are

dom(TRP) = (0,1,2,3,...,60001 , dom(EQ) = (e(s,v,a): stS0 ,veVo,a0-A 0

where e(s,v,a) indicates constant acceleration two-dimensional motion with initial

.position s, initial velocity v, and constant acceleration (possibly 0) a, where

So,Vo,A 0 are suitably chosen sets of 2 by I real vectors.

Some additional examples worth noting:

dom(ALG) = {ALG1,ALG2,..,ALG3i} ,

where ALGI is a piece-wise iinear Kalman filter, ALG2 is an alpha-beta gilter,.-,

ALG17 is a hypotheses tester which assures the general linear regression model,

ALG18 is a hypotheses tester based upon AlI procedures.....

dom(DET) = (no detect,detect) , S VS,2 , -.... 23

where each S is a linguistic or stochastic variable. For examples of linguistic

variables:

S = "ship appears short- maybe under 300 feet long"

"ship appears to be of .ediun length - maybe in the

neighborhood of 200-4M) I fee , 1ng"'

=3 ship appears to be very wide and in fg a reddish

flag wis spotted:;



On the other hand, S4 ,S5,... ,S25 can represent stochastic variables, such

as

5  shipIis 4.8 miles from ship 2,

where the above outcome is assumed to come from an expGnential distribution with

parameters X = 0.7 miles and o = 2.1 miles, so that S5 represents the outcome of

a random variable with a well-defined distribution which is known.

In the case of S3 and other linguistic-based descriptions, one can utilize

a technique (see [19])which converts first the linguistic description to a fuzzy

set or possibilistic form and then to a random set structure, or equivalently, a

cdf. For example, .S3 can be stated as

S3 = (ht(ship) e very(long))-(col(flag) e reddish lweather E fog)

where the symbols c and - above refer to formal attribute membership and conjunction,

respectively, and where the domain of values i;, e.g.,

dom(S3) = ['0,lO0''] x {degrees of redness in some scale }

=A3,1 =A 3 2

The symbol I refers to conditioning. (See the next section for further explication.)

Here, S3 corresponds to the fuzzy set (membership function) g3 :dom(S 3) - [0,1] in

the compound form

g3(xy) = g3 ,1(x) g3,2 (Y) ; x=ht(ship), y=col(flag)

where functions g3,1 :A3 ,1 - [0,1] and g3,2:A3,2 - [0,1] are both obtained from ex-

pert prior advice and intelligence information. The range values of the 93i are

possibilities - in general, representing overlapping compound events, and hence not

necessarily disjoint probabilitics. The operator® is not necessarily multiplicat-

ion and is obtained following the specification uf the stochastic interpretation:

Each 93J can be identified with the one point ,.overage of random set g3,i [U3,i '

or equivalently as

(U 3,i ' 93,i(x))xcA3J or equivalently (U 3 [, g3,i(x)] xA 3 i

Each U is a random variable uniformly distributed over the unit interval [0,1]EcU3,i

and the joint distribution of U3,1 and U3, 2 - as well as with other similarly in-

troduced uniform-[0,l] random variables - i determined by experts or from prev -



ious knowledge. In particular, one extreme case is where the U3 ,i are all identical;

another is where they are the negation (unity minus the value) of each other; an in-

termediate case is where thay are all statistically independent, among an infinity

of other possible levels of correlation. All of this corresponds to choices of the

operator G , called a copula in the literature ([19],Chapter 2.3.6).

In summary, all C3 variables can be expressed as states of random variables

or in a related form as collections of such descriptions, indexed by the points in

the associated domains when the variables are linguistic in nature.

UNCONDITIONAL LOGICAL OPERATORS / RELATIONS

Following the determination of all variables and the appropriate transforms,

abd domains of variables, logical operations are next considered. These are merely

formal counterparts for the ordinary set and classical logic operators • (and, con-

junction, etc.), v (or, disjunction, etc.), ( ) (not, negation, complement, etc.).

As usual, these operators obey the la%.s of boolean algebra relative to any variab les

(or their domain values). Thus, if X,Y,Z are any C3 variables, provided it is mean-

ingful to apply any of these operators throughout a given relation, one has [20]:

X*(Y*Z) = (X*Y)*Z associativity , (1)

X*X = X idempotency , (2)

X*Y = Y*X commutativity , .(3)

for , • , v

0 v X = X = -X identity (4)

X-(Y v Z) = (X-Y) v (X-Z) ; X v (Y-Z) = (X v Y) - (X v Z) distributivity , (5)

(X.Y)' X'vY' ; (X v Y)' = X'-Y' deMorgan , (6)

X" = X involution , (7)

0' = , Q' = 0 zero-unity properties , (8)

X-X' 0 , X v X' = Q orthocomplementation /
law of excluded middle , (9)

X v (XY) = X X.(X v Y) absorption , (10)

noting that all of the above axioms for boolean relations are not independent of

each other, but are presented for purpose of completeness.

In addition, one has the basic partial order (corresponding to subset in-

clusion)

X < Y iff X = X.Y iff Y = X v Y , (1I)



with strict order < (corresponding to proper subset inclusion) holding when < holds

but = does not, i.e.

X < Y iff X < Y & X Y (12)

Finally, unless otherwise indicated, the normalization axiom will be assumed here

for all variables of interest:

v X = 2 , (13)

Xedom(X)

somewhat abusing notation, where in place of the top X and lower left X, technically

speaking, one should use a dummy variable denoting a typical possible value of X in

dom(X). The above also means that the domain of X i a possibly overlapping but ex-

haustive coveribg, of 2.

CONDITIONAL LOGICAL OPERATORS / REL] ATIONS

While many readers of this work will be familiar with the axioms character-

i-zing boolean algebra of unconditioral classical logical relations presented in the

previous section, few, if any will recognize the following analogue for conditionaZ

logical operators and relations, yet such conditioning plays a key role in much of

the problems arising in C3 and elsewhere. Due to historical reasons a gap has ex-

isted between conditioning in probability and that in classical logic. In [12,13]

this is rectified through the rigorous derivation of a sound and practical to im-

plement,calculus of operators and relations. For example, if one wishes to evaluate

the expression p(s) , where

s = 4if event b occurs then a happens or if d occurs then c

where e.g.

a : enemy resupplies sector , b = enemy has increased sector C men,

4 C
c = enemy will advance against us , d = enemy has increased sector B

supply" ,

no current standard probability procedure exists for dealing with this which is

both mathematically sound and efficient and which is compatible with the usual inter-
pretations

p("if b then a") = p(alb) (= p(a-b)/p(b), provided p(b) > 0 ),

p("if d then cO) = p(cld)



On the other hand, the new -development permits the full evaluation of p(s)

as

p(s) = p((-a-b)v(c-d)(a-b) v (c-d) v b-d))

th6 obtainable through the usual laws of (unconditional) probability, such as

p((a-b)v(c-d)) = p(a-b) + p(c-d) - p(a-b-c.d)

etc.

The above problem holds because of the appearance of distinct antecedents in

the conditional information. In any case, the new axioms or laws governing the behav-

ior of conditional events of the form (XIY) , read as "if Y. than X". or OX given Y,

are for all (unconditional) X,Y,Z,W :

Evaluation: p((XIY)) = p(XIY) , for all prob. p over events X,Y,W,Z,.. (14)

(X ) = X extension , (XIY) = (X'YIY) invariance of consequent-to-antecedent,
(15)

(XIY)- (WIZ) iff X-Y = W-Z & Y = Z identification (16)

(XIY)l(WIZ)) (X-Y.W.Z I Y-((W.Z)v(X'.Z'))) homomorphic identification of
higher order conditioning ,(17)

(XIY)' = (X'IY) = (X'YIY) negation , (18)

(XIY).(WIZ) = (X-Y.W-Z I(X'-Y)v(W'-Z)v(Y-Z)) conjunction , (19)

(XjY)v(WIZ) = ((X.Y)v(W.Z) I (X.Y)v(W.Z)v(Y-Z)) disjunction,(20)

(XlY)x(WfZ) (xxwIYxZ) = ((X.Y)x(w-z)I YxZ) (21)

cartesian product relative to product boolean algebra°

Partial ordering is extended and characterized as

(XIY) < (.WjZ) iff (XIY) = (XIY)-(WIZ) iff (WIZ) = (XIY) v (WIZ)

iff X-Y <WZ & W'-Z -< X'-Y , (22)

with a similar form for strict order.

All of the above leads to an algebraic structure for the set of all con-

ditional events (XIY) , though not quite boolean, is a relatively pseudocomplemented-

lattice which is also a Stone algebra with additional properties. (Again, see [12,13]

for further properties.)



SOME SPECIFIC SHOR PARADIGM RELATIONS AS AXIOMS

With the general logical structure of variable relations cbtablished, the

remaining axioms required to specify the formal C3 theory fully are now given. These

relations essentially divide up into two types: weak sufficiency axioms and strong

sufficiency axioms. The weak corresponds to the classical sufficiency conditions in

probability, and hence are dependent on the specification of particular families of

cdf's. For example, when processing information, if the regression relation intro-

duced previously becomes a linear one and if noise Q and structure variable T are

jointly gaussian distributed , where p indicates the cdf and the regression relation

is
S = B.R + Q , (f)

B a constant m by real matrix of rank k, Q in by 1, S m by 1, then one has the

relation

p(TIS) = p(TIR) ; = (BT Cov-(Q)-B)-B Cov-(Q).S (g)

It should be noted alsG that P is the best least squar-s estimate of R through S

which is absolutely unbiased, etc. (See, e.g., [21].)

However, when the above assumptions do not hold, then the corresponding

sufficiency condition is invalid. On the other hand, independent of the probability

chosen and the specific function froms invoZved. the following strong sufficiency

conditions hold relative to being conditional events:

(N++IR++T+N SR-N) = (N++IR++ N
+ , (h)

(R++IT+.N+.S.R-.N) = (R++IDEC+.N+), (i)

(T+iN+S.R-N) = (T4 IN+), (U )

etc., where all of the above are derived as reasonable fits to the sequence of data

processing occurring within a typical node during the SHOR paradigm. (See Figures

2 and 3.) A longer list of strong sufficiency relations can be found in [17], p. 97.

Further subdivisions of variables such as for T ans S can lead to additional relations

such as e.g. requiring

(DECIS-DET-IIYP-ALG) (DECIS) v (O[CIALG) (k)

to reflect possible man-over-ride ;r.ailive to use of alaorithms available frr incoming

"signal "



THEOREIS DEDUCED FROM THE FORMAL THEORY

In summary, the formal theory of C3 consists of:the usual alphabet with

appropriate sub- and super-scripts to indicate time and node identification ;

eqs.(a)-(e),(h)-(j) (with additional axioms representing further subdivisions of

relations such as in eq.(k)) representing C3 proper relations; .eqs.(l)-(12) repre-

senting the unconditional clas:ical logical operators and relations constituting

boolean algebra; eqs.(15)-(22) representing the conditional extension of logical
operators and relations;and, finally, the evaluations and interpretations furnished

in(12),(14) and (f),(g) when appropriate. In addition, the preliminaries to imple-
menting the theory include the evaluation of specific domains of variables and the

replacement of linguistic descriptions by stochastic ones, described in the previous

sections.

Next, a sitnple list of results is presented in the form of Theorems 1-3,

leading, in turn, to the chief results- Theorems 4,5 in which the data processing

cycle of a typical node dccrding to the SHOR paradigm is quantified recursively.

Theorem 2. Equal antecedent case for combining conditional forms.

For any C3 variables X1 ,..,X ,Y and logical operators, such as - and v

or any well-defined combination of them, indicated by ,

(Xl l Y)*...*(Xn Y) = (X1*...*XnY)

Proof: Use conditional event algebra axioms specialized to the equal antecedent

case (see eqs.(18)-(20) with Y=Z).
u

Theorem 2. Conditional forms in expanded disjunctive expressions of auxiliary
variables.

For any C3 variables X,Y initially given and any auxiliary C3 variables

chosen for convenience, say ZI,..,Zn, assuming normalization of the Zi.

(XlY) v (X.ZI -  .- ZmIY)
all 7i  c dom(Z i ),

Proof: Combine Theorem 1 with normalization (12), associativity (I), and identity
(4).



Theorem 3. Fundamental chaining relation among conditional forms.

For any C 3 variables X,Y,Z1,.*,Z m , the following relation always holds:

(X.Z 1..... Z mY) = (XIZ 1  Z "ny)*(ZlIZ 2 .'. Zm.Y).. . .*(Zm-lIZ mY)*(ZmIY).

Procf: Apply iteratively the conjunction axiom (19) to the right hand side above.
K

Theorem 4. Formal recursive expansion of evolving node states - simplified form.

(NIN) ++ v ++ F(N ,N ;R +,DEC ,. .,DET')

all R E: dom(R ),
DEC~ +E dom(DEC )

D '.-T~ + dom(DET)

where

F(N +,N ;R +,DEC ,.. ,DET ) = (N fIR -N+)-(R bIEG *N ).

(DEC+IU+J Y AL+DT+N)

(ALG+j DET.N+). ( DET+I N)

where each of the above factors can be decomposed further where required.

Proof: Combine Theorems 2 and 3 and use e.g. (h)-(j).

Theorem 5. Probability evaluation of evolving node states for SHOR paradigm.

Let p be any probability measure. Then

all R+ +cdorn(R+),

DEC dom( DEC ),

DET'i F-dom( DET'

who r



++ ++++

p(F(N+ ,N ;R+ ,DEC+,..,DET+)) = p(N++IR++N+ )'p(R++IDEC N )-

p(DEC+IFUS+-HYP+- ALG+ *DET+.N+)•

p( ALG+I DET+. N+ )-p( DET+ JN+)

Proof and Remark: The above follows irmediately from use of (14) and tin- t .

properties of conditional probabilities. Although Theorem 5 could bF i

rather easily as a standard application of the expansion of conditional p.- tabil-

ities in terms of summing out auxiliary variables, the point to be made he,, is

that any one of the factors could possibly be expressed not necessarily imple

chaining form, but rather as a nontrivial logical combination of other te. - For

example, note t'ait eq.(k) or a related form could be used to evaluate p(DECI+IFUS+ -

HYP+. ALG+. DET+.) or a similar situation could arise in the evalua' -n of the

conditional Jata fusion term, due to the possibly many conditional sources yield-

ing it.

IMPLEMENTATION OF THE THEORY AND THE C3 DESIGN GAME

Applying th2 above outlined theory to a particular C3 setting requires

Specification of all app-opriate variables and kheir possible distributions.

Due to the microscopic nature of the approach, an exponential growth can

be expected in general for the computations involved as the number of variables

is increased for fidelity of modeling. One technique for possible reduction of

this load is outlined in [22], where a combination of an "exact" linearization

procedure is utilized with gaussian sum expansions of distributions. Another is

the judicious use of key relations and the cmission or simplification of other-

In [23] Girard outlines such an implementation of theory for a reduced versir

the Naval Outer-Inner Air Battle, where a Blue fighter engages an Orange be

in the outer zone. The full-scale implementation of this is yet to be dev

which includes modeling of missile launches, counterattacks and maneuve'

also [.1-I for an outline of an implementation scheme related to ihe 0

Air Battle and [5] for the alternative approach of Rubin and Mayk ir

It is intended that the outputs of the model as developed

developing a full C' design game. Here the adversary and friend]

tified with the possible choices one can make subject to 'he ct

rain, politics, resources, etc., for the functional furm', cf tU



diinal cdf'-s that can be chosen among the variables. A summary of a generic

C3--des-ign- gamez follow-ing these ideas is presented in Figure 6 below:

Typical game mov~es:

Q o FindlylBiue) C3 System

Bfor A (Adversary/Grange) C' Syste

o, gepara-iely correspond to --h.ices

of P(N IR+' *N+), p(R'+jDEC' *N+), ...,

Ip(ALG+IDET -N~) p(DETfN ec

Via-Theorem 5.Qtaia:

F (N- IN.) . A,(Nj INj)

fo r all indices of nodes i for F, j for A

Obtain Node-Averg Idl th -i fmn
LaD System:

() = +4 +
H FW Average (PF ,(Ni INS))

over all nodes i
for system F

H A0 Average( PA (N. .N+)

over oil nodesj
for s,stem A

Compute Overall C' Design Gamfe _...L:

L(oL,0) =loss(HF(.i)),H(W)

for some pre-chosen loss function

loss :[O,l]x[O,l] -~reals

3
Figure 6. Outline of C Design
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